Warning: mkdir(): No space left on device in /var/www/tg-me/post.php on line 37
Warning: file_put_contents(aCache/aDaily/post/dsproglib/--): Failed to open stream: No such file or directory in /var/www/tg-me/post.php on line 50 Библиотека дата-сайентиста | Data Science, Machine learning, анализ данных, машинное обучение | Telegram Webview: dsproglib/6495 -
📌Промт дня: анализ важности признаков после обучения модели
После того как вы обучили модель (особенно если это ансамблевый метод вроде Random Forest или градиентного бустинга), важно понять, какие признаки влияют на предсказания.
Это помогает: — интерпретировать модель, — упростить её (feature selection), — обнаружить «лишние» или дублирующие признаки.
Промт:
Проанализируй важность признаков обученной модели. Выполни следующие шаги:
— Извлеки и отсортируй признаки по степени важности. — Построй barplot с топ-10 признаками. — Проверь, есть ли признаки с нулевой или близкой к нулю важностью — возможно, их можно удалить. — Если модель поддерживает SHAP / permutation importance — добавь соответствующую визуализацию. — Сформулируй гипотезы: почему те или иные признаки оказались важны? Как это согласуется с предметной областью?
Рекомендованные инструменты: ✅model.feature_importances_ — в sklearn-моделях, XGBoost, LightGBM ✅eli5, shap, sklearn.inspection.permutation_importance — для глубокой интерпретации ✅seaborn.barplot, matplotlib — для наглядных графиков
📌Промт дня: анализ важности признаков после обучения модели
После того как вы обучили модель (особенно если это ансамблевый метод вроде Random Forest или градиентного бустинга), важно понять, какие признаки влияют на предсказания.
Это помогает: — интерпретировать модель, — упростить её (feature selection), — обнаружить «лишние» или дублирующие признаки.
Промт:
Проанализируй важность признаков обученной модели. Выполни следующие шаги:
— Извлеки и отсортируй признаки по степени важности. — Построй barplot с топ-10 признаками. — Проверь, есть ли признаки с нулевой или близкой к нулю важностью — возможно, их можно удалить. — Если модель поддерживает SHAP / permutation importance — добавь соответствующую визуализацию. — Сформулируй гипотезы: почему те или иные признаки оказались важны? Как это согласуется с предметной областью?
Рекомендованные инструменты: ✅model.feature_importances_ — в sklearn-моделях, XGBoost, LightGBM ✅eli5, shap, sklearn.inspection.permutation_importance — для глубокой интерпретации ✅seaborn.barplot, matplotlib — для наглядных графиков
Bitcoin mining is the process of adding new transactions to the Bitcoin blockchain. It’s a tough job. People who choose to mine Bitcoin use a process called proof of work, deploying computers in a race to solve mathematical puzzles that verify transactions.To entice miners to keep racing to solve the puzzles and support the overall system, the Bitcoin code rewards miners with new Bitcoins. “This is how new coins are created” and new transactions are added to the blockchain, says Okoro.
What is Secret Chats of Telegram
Secret Chats are one of the service’s additional security features; it allows messages to be sent with client-to-client encryption. This setup means that, unlike regular messages, these secret messages can only be accessed from the device’s that initiated and accepted the chat. Additionally, Telegram notes that secret chats leave no trace on the company’s services and offer a self-destruct timer.
Библиотека дата сайентиста | Data Science Machine learning анализ данных машинное обучение from br